Oulun yliopiston Optoelektroniikan ja mittaustekniikan yksikön (OPEM) tutkijat ovat keksineet uuden tulostusmenetelmän äärimmäisen herkkien fotoilmaisinten valmistamiseen. He pystyvät valmistamaan mustetulostuksella tarkkoja infrapunas-antureita aiempaa laadukkaammin ja edullisemmin. Nyt tutkijat ovat saaneet näkyvyyttä tunnetussa nanoalan tiedejulkaisussa.
Tutkimustulosten ytimessä ovat yhteistyössä kanadalaisen Toronton yliopiston tutkijoiden kanssa kehitetyt kolloidiset kvanttipisteet. Ne ovat pikkuruisia hiukkasia, joissa on 15–150 atomia puolijohdetta ja joille kvanttimekaniikan ilmiöt antavat ainutlaatuiset optiset ja sähköiset ominaisuudet.
’’Olemme erityisen tyytyväisiä julkaisuun siksi, että se on tulosta yhteistyöstämme Toronton yliopiston huippuluokan asiantuntijoiden kanssa. Yhdistimme heidän asiantuntemuksensa kvanttipisteiden syntetisoinnista ja oman painetun älykkyyden osaamisemme’’, sanoo projektia johtanut tutkija dosentti Rafal Sliz Oulun yliopistosta.
Pisteiden kokoa säätelemällä tutkijat pystyvät hienosäätämään sitä, miten ne reagoivat valon eri aallonpituuksiin kuten infrapunasäteilyyn, mikä on ihmissilmälle näkymätöntä. Kvanttipisteitä voidaan käyttää sekä valoa tuottavina elementteinä että mittaavina antureina.
’’Kvanttipisteet on tiedetty pitkään. Tasalaatuinen ohut kalvo, joka muodostuu kvanttipisteistä on todella vaativa rakenne valmistaa edullisesti. Materiaalitekniikan ja valmistustekniikan kombinaatio on tässä se innovaatio’’, sanoo OPEM-tutkimusyksikön johtaja professori Tapio Fabritius.
OPEM-yksikön hallitsema mustesuihkutulostustekniikka mahdollistaa optoelektronisten laitteiden luomisen suunnittelemalla toiminnallisia musteita, jotka tulostetaan erilaisille pinnoille, esimerkiksi joustaville alustoille, vaatteille tai ihmisiholle.
Nyt tutkijoiden kehittämällä kvanttipisteliukosella pystytään mustesuihkutulostuksella valmistamaan pisterakenne, jossa sensoreina toimivat pisteet ovat tasaisesti jakautuneena. Kehitetty teknologia on tutkijoiden mukaan virstanpylväs uudenlaisten alle mikrometrin paksuisten, joustavien ja huokeiden infrapunatunnistuslaitteiden, uuden sukupolven aurinkokennojen ja muiden uudenlaisten fotonijärjestelmien kehittämisessä.
Tutkijoiden artikkeli Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors julkaistiin hiljattain American Chemical Society:n ACS Nano-tiedelehdessä (LINKKI).
TAUSTAA: Infrapuna-alueella olevaa spektriä käytetään monissa sovelluksissa lähes rajattomasti. Lämpökamerojen avulla esimerkiksi paikannetaan rakennuksista lämpövuotoja ja rakennevikoja, etsitään kadonneita ihmisiä, tutkitaan avaruutta, mitataan valtamerten pintalämpötiloja ilmastotutkimuksen tueksi ja hirmumyrskyjen syntymisen ennustamiseksi. Ihmisen terveyden tutkimisessa voidaan mitata vaikkapa pintaverenkierron lämpötilavaihteluita kasvoista, jolloin voidaan analysoida tunnetiloja ja stressaantuneisuutta.
Aloituskuva: Kuvio esittelee lyhyesti Oulun yliopiston ja Toronton yliopiston tutkijoiden suorittaman tutkimuksen ydinperiaatteen. Kolloidisista kvanttipisteistä koostuva rakenne on mustesuihkutulostettu, mikä luo aktiivisen anturielementin.
Tärkeimmät teknologiauutiset kätevästi myös uutiskirjeenä! Tilaa (LINKKI)
LUE – UUTTA – LUE – UUTTA – LUE – UUTTA
Uusi ammattilehti huipputekniikan kehittäjille – Lue ilmaiseksi verkosta
https://issuu.com/uusiteknologia.fi/docs/1_2019/