Aalto-yliopiston tutkijat ovat onnistuneet ensimmäisinä maailmassa yhdistämään kaksi äärimmäisen ohutta tantaalidisulfidikerrosta niin, että elektronit käyttäytyivät kvanttitilassa tavalla, joka on aikaisemmin vaatinut harvinaisia maametallien yhdisteitä. Uutta yhdistelmää voi hyödyntää kvanttimateriaaleissa ja kvanttitietokoneiden kubiteissa. Katso lisää esittelyvideolta.
Uusi materiaali voi soveltua kvanttilaskentaan sekä edistää epätavanomaisen suprajohtavuuden ja kvanttikriittisyyden eli materiaalien yhdestä kvanttitilasta toiseen siirtymisen tutkimusta. Materiaalin etu on myös kohtuullisen helppo valmistusprosessi.
Tutkijoiden alkuperäinen tavoite oli luoda kvanttispinneste, jonka avulla he voisivat tutkia uudenlaisia kvantti-ilmiöitä. Kvanttispinneste käyttäytyy magneettisen nesteen tavoin, mutta se ei jähmety tai järjestäydy edes absoluuttisessa nollapisteessä.
Kokeessa käytetty tantaalidisulfidi on siirtymämetallidikalkogenideihin kuuluva materiaali, jolla on useita eri kidemuotoja. Yhden atomikerroksen paksuinen tantalumdisulfidi voi olla joko kvanttispinneste tai suprajohde, joka tarkoittaa, että sähkö pääsee kulkemaan täysin ilman vastusta. Valmistusprosessissa syntyy sekä yhden että kahden atomikerroksen paksuisia saarekkeita, joissa on molempia kidemuotoja.
Kun tutkijat tarkastelivat kahden atomikerroksen paksuisia saarekkeita, he havaitsivat kerrosten välissä ilmiön, jota kutsutaan Kondo-tilaksi. Ilmiö syntyy magneettisten epäpuhtauksien ja elektronien välisestä vuorovaikutuksesta, joka johtaa siihen, että materiaalin sähkövastus muuttuu lämpötilan muuttuessa.
Raskaat fermionimateriaalit ovat tärkeitä esimerkiksi uusien kvanttimateriaalien luomisessa.
”Monimutkaisten kvanttimateriaalien tutkimista hidastaa se, että niitä on vaikea löytää luonnossa ilmenevistä yhdisteistä. Tavoitteemme on luoda keinotekoisia materiaaleja, joita voi helposti muunnella ja hallita ulkoisesti. Näin voimme havaita eksoottisia ilmiöitä tehokkaammin laboratoriossa”, professori Peter Liljeroth sanoo.
Niillä voidaan saada aikaan esimerkiksi topologista suprajohtavuutta. Se voi auttaa rakentamaan paremmin ympäristön häiriöitä kestäviä kubitteja, mikä vähentää virheitä ja kvantti-informaation haihtumista kvanttitietokoneiden kubiteista.
”Keinotekoinen raskas fermionimateriaali, jota voisi hallita vaikkapa ulkoisella sähkökentällä, olisi hyödyllinen esimerkiksi elektronisissa laitteissa”, sanoo tohtorikoulutettava Viliam Vaňo.
Uutta raskasta fermionimateriaalia voidaan hyödyntää myös kvanttikriittisyyden tutkimisessa. ”Se mahdollistaa vieläkin eksoottisempien kvanttimateriaalien tutkimisen”, professori Jose Lado kertoo.
Uusimmat tulokset julkaistiin äskettäin Nature-lehdessä. Lisää Aalto-yliopiston alueen tutkimuksesta voit lukea täältä (LINKKI) ja Uusiteknologia.fi:n aiemmista kvanttitekniikoihin liittyvistä uutisista (LINKKI). Tässä myös video Aalto-yliopistossa tehtävästä tutkimuksesta youtube-videolla (LINKKI).
Kuva: Taiteellinen näkemys kvanttilomittuneesta tilasta. Aalto-yliopisto/Heikka Valja.